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The topological structure of basin boundaries plays a fundamental role in the sensitivity to the final state in
chaotic dynamical systems. Herewith we present a study on the dynamics of dissipative systems close to the
Hamiltonian limit, emphasizing the increasing number of periodic attractors, and on the structural changes in
their basin boundaries as the dissipation approaches zero. We show numerically that a power law with non-
trivial exponent describes the growth of the total number of periodic attractors as the damping is decreased. We
also establish that for small scales the dynamics is governed by effective dynamical invariants, whose measure
depends not only on the region of the phase space but also on the scale under consideration. Therefore, our
results show that the concept of effective invariants is also relevant for dissipative systems.
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I. INTRODUCTION

Many dynamical processes have been shown to possess
coexisting metastable states, and their dynamics can be
highly sensitive to the initial conditions. Some examples in-
clude neural behavior �1,2�, rain events �3�, earthquakes’ dy-
namics �4,5�, effective fractal dimension of energy levels �6�,
among others. Their correct interpretation requires an under-
standing of dynamical systems with very low dissipation,
lying in between the strongly dissipative limit and the con-
servative one. In spite of the importance of this problem,
there are few systematic studies of the low-dissipation limit
and the transition from dissipative to conservative dynamics.
This is the problem we address in this paper.

In Hamiltonian systems, chaotic regions typically coexist
with regions of regular motion around the marginally stable
periodic orbits, also known as Kolmogorov-Arnold-Moser
�KAM� invariant tori. Chaotic trajectories have intermittent
behavior and spend long times sporadically near the border
of regular islands. This stickiness to the KAM tori makes
their dynamics fundamentally different from that of hyper-
bolic chaotic systems since even small islands can exert great
influence on the global dynamics �7–9�. On the other hand,
strongly dissipative systems are characterized as having only
one or few attractors to which all the initial conditions even-
tually converge. These two regimes could not be more dif-
ferent from each other; however, if the dissipation decreases
to zero, the phase-space structure of the dissipative systems
must evolve in such a way as to approach the complex hier-
archical organization found in Hamiltonian systems. How
this transformation occurs is far from obvious.

Despite the existence of extensive investigations on
strongly dissipative and on Hamiltonian systems, very little
is known about properties of systems close to the border
between dissipative and conservative dynamics, where many

coexisting periodic attractors are present �10�. In this paper
we investigate the growth of the number of periodic attrac-
tors and how the topology of the phase space evolves when
the dissipation is reduced. We obtain numerically a power
law describing the growth of the number of periodic attrac-
tors as the damping approaches zero. When the system is
close to the Hamiltonian limit, we find that high-period pe-
riodic attractors become increasingly important in the sys-
tem’s dynamics, in contrast to the case with high dissipation.
These emerging attractors proliferate ever more rapidly as
the dissipation decreases. Moreover, we argue that although
this number can be extremely high for small dissipation, we
expect it to be finite �for nonzero dissipation�, as conjectured
recently �11,12�. The power law of the number of attractors
with dissipation, found in this work, corroborates this con-
jecture. Another important finding in this paper is that for
low levels of damping the dynamics is characterized by ef-
fective invariants, a concept previously used in the context of
nonhyperbolic dynamics of Hamiltonian systems �7�. We
study specifically the effective fractal dimension, which we
show to depend on the scale and also on the region of the
phase space. Therefore, we show that effective dynamics is
relevant also for dissipative systems, and not only for Hamil-
tonian ones.

This paper is organized as follows. We start with Sec. II,
where we introduce the dynamical systems used in our
analysis and revisit the problem of the number of coexistent
periodic attractors. It is followed, in Sec. III, by a discussion
regarding the topology of the phase space in the low-
dissipation limit. In Sec. IV we introduce effective invariants
and define the effective fractal dimension for weakly dissi-
pative systems. Finally, Sec. V brings our conclusions. In the
Appendix, we bring up some formal definitions. In particular,
we recall a definition of periodic attractors, and discuss its
implications for both experimental and numerical realistic
investigations, where one typically is only able to make use
of limited precision. We also recall a definition of basin of
attraction, which is coherent with the definition of periodic
attractors used here.*c.rodrigues@abdn.ac.uk
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II. NUMBER OF PERIODIC ATTRACTORS

A. Single rotor map

A paradigmatic system that allows the investigation of the
transition from the dissipative to the conservative limit is the
single rotor map, obtained from the mechanical pendulum
kicked periodically at times nT, n�N+, with force f0 �13�,

xn+1 = xn + yn�mod 2�� ,

yn+1 = �1 − ��yn + f0 sin�xn + yn� , �1�

where x� �0,2�� corresponds to the phase, y�R corre-
sponds to the angular velocity, and �� �0,1� is the damping
parameter. For �=0, the well-known area preserving stan-
dard map analyzed by Chirikov �14� is recovered. For �=1,
we obtain the circle map with zero rotation number.

Previous work has considered the question of the number
of attractors for this system �10�. They have derived an ana-
lytical expression for the number of period-1 primary attrac-
tors, which have not undergone period-doubling bifurcation,

Np1 = 2I� f0

2��
� + 1, �2�

where I� · � denotes the integer part of the expression in
brackets. As pointed out in Ref. �10�, numerical detection of
attractors with high period is a difficult task. The reason is
the extremely small size of their basins of attraction, which
requires computation using very fine grids. Adding to this,
they have short lifetime in the space of parameters. There-
fore, it is necessary to follow a great number of initial con-
ditions in order to be able to detect them.

Here we overcome this problem. Instead of choosing an a
priori fixed number of initial conditions in a preset grid, as
previously done in Ref. �10� and elsewhere, we fix the non-
linearity f0=4.0 for a given damping � and then iterate an
ensemble of randomly chosen initial conditions with uniform
distribution on a bounded region of the phase space. There-
fore, the chance for an attractor to be found does not depend
on our particular choice of the grid. For the dissipative case
the dynamics takes place in the cylinder �= �0,2���R and
the area where the initial conditions are chosen depends on
the damping. Since ��0, from the second equation in map
�1�, one gets �yk+1�� �1−���yk�+ f0, so if �yk�� f0 /�⇒ �yk+1�
� �yk�. Hence the attractors are found in ���, with �
= �0,2��� �−ymax,ymax�, where ymax= f0 /�.

In order to detect the attractors, even with very small
basins of attraction, we keep iterating new randomly chosen
initial conditions �x0 ,y0��� until their trajectories converge
to some periodic attractor. We use up to 2�105 iterations;
independently of the damping, this provides a convergence
of more than 99.5% of the initial conditions. We have ig-
nored the remaining trajectories �which may include chaotic
orbits�, regarding them as not being statistically representa-
tive. It is known that for this and similar systems, almost all
attractors consist of periodic orbits. We keep iterating new
initial conditions until we fail to find new attractors. This
was determined by the criterion that whenever the total num-
ber of detected attractors did not change for the last 106

initial conditions, we assume that all the detectable attractors

have been found. This is illustrated in Fig. 1 for �=0.0035.
We repeat this procedure for different values of �, in order to
find how the total number of periodic attractors changes with
damping. Notice that the area of the phase space where the
trajectories are trapped grows as we decrease �; for �
=0.001, for example, we need 22�106 initial conditions to
find most attractors in the system.

The question regarding the finiteness of the number of
attractors and their density in phase space has been consid-
ered before, and it is widely regarded as one of the most
important open problems still to be answered in dynamical
systems theory �11�. Among many conjectures, it has been
initially proposed that the number of attractors was infinite
�15�. Afterward it has been proved that this should only hold
for a zero measure set of parameter values although dense in
some interval �16�. Recently it has also been conjectured by
Palis that the total number of attractors should be finite �12�.

To investigate this issue using our system �1� as a testing
ground, we calculate the number of attractors as described
above, and see how this depends on the dissipation � as it is
decreased and approaches the conservative limit, i.e., �→�
�0. Figure 2 shows a log-log plot of our data, yielding a
power law describing the dependence of the total number of
periodic attractors on �.

Numerical fitting gives us the following law:

NTPR
� 1.26�−1.21, �3�

where NTPR
is the total number of detected periodic attractors

for map �1�.
Now we want to compare our power law for the growth of

the total number of periodic attractors with formula �2� �10�
for the number of period-1 attractors. We observe in Fig. 2
that when the damping is decreased the contribution of
higher period periodic attractors becomes important for the
total number of detected attractors. The main reason is that
the lifetime of a stable periodic orbit in parameter space in-
creases as damping is reduced. By lifetime of an orbit we
mean the range in parameter space for which the orbit exists
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FIG. 1. Total number of periodic attractors detected for a spe-
cific value of the dissipation �, as a function of the number of initial
conditions randomly chosen in � and evolved according to the
map. The parameters for map �1� were f0=4.0, and �=0.0035.
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without undergoing any bifurcation. Since the higher the pe-
riod of an attractor, the smaller its lifetime interval in param-
eter space �10�, the extension of lifetime for small damping
promotes the overlap of different periodic orbits in the space
of parameters, which was not possible before. Equation �2� is
only valid within the parameter intervals where none of the
period-1 attractors has undergone period doubling �10�.
Since some of the period-1 attractors may have gone through
such process for the parameters in Fig. 2, the difference be-
tween the expected number of period-1 attractors and the
total number of attractors can be even larger than that in-
ferred from the above argument.

B. Hénon Map

We further investigated the growth of the number of pe-
riodic attractors for a map of a different class than the pre-
vious one. We chose the Hénon map in the form �17�,

xn+1 = A − xn
2 − �1 − ��yn,

yn+1 = xn, �4�

where A represents the bifurcation or nonlinearity control
parameter. The parameter �� �0,1� represents the damping
parameter. When �=1, the two equations in Eq. �4� are no
longer coupled, and we obtain the quadratic map. For the
other limit, �=0, we have a conservative map; hence the
determinant of its Jacobian matrix is equal to one. Contrary
to the case for map �1�, the dynamics for Hénon map �4� is
not a priori contained within a region of the phase space. For
a range of parameters, the initial conditions can either be

trapped by some of the coexistent periodic attractors, or be
scattered. In fact, most of the initial conditions diverge to
infinity.

We repeated the procedure applied to the previous map
in order to obtain the number of periodic attractors for the
Hénon map. We fixed A=1.075 for map �4�, and we iterated
a set of initial conditions in �−5,5�� �−5,5�, verifying
whether they converged to some periodic attractor or di-
verged. Because the number of initial conditions converging
to periodic attractors is much smaller than that diverging, in
order to obtain about 20�106 initial conditions converging
to periodic motion, as many as 20�107 initial conditions
were necessary depending on the damping.

Figure 2 shows a log-log plot of our data, yielding a
power law describing the dependence of the total number of
periodic attractors on �. For the Hénon map, the numerical
fitting produces,

NTPH
� 0.025�−1.61, �5�

where NTPH
is the total number of detected periodic attractors

for map �4�.
As previously observed �17�, the Hénon map belongs to a

class of dynamical systems whose conservative element has
few primary island, which are surrounded by secondary
ones. Therefore, although it also observed the coexistence of
periodic attractors for a range of parameter, it is expected for
this number to be smaller than that for the single rotor’s
family.

C. On the general behavior

Even though we cannot claim the above result to be a
mathematical proof, our results seem to uphold Palis’ conjec-
tures �11,12�, i.e., for any arbitrarily small ��0, the limit of
Eq. �3� �Eq. �5�� as lim�→�+NTPR,�H�

predicts a finite number
of attractors for the system although this number can be very
high for small � �NTPR

, and NTPH
for the single rotor map,

and for the Hénon map, respectively�.
Although some attractors may have their basins of attrac-

tion to be so tiny that even by iterating a huge number of
initial conditions it is not enough to numerically detect them.
Figure 1 shows that the number of attractors that was de-
tected is asymptotic to a constant �we obtain a similar figure
for the Hénon map�. Therefore, our results indicate that the
number of attractors increases as a power law as the dissipa-
tion decreases, being finite for any given ��0, although ar-
bitrarily large for � approaching zero. Even though the spe-
cific value of the exponent in Eqs. �3� and �5� may be only
valid for maps �1� and �4�, respectively, the growth of the
number of periodic attractors is a very generic property of
weakly dissipative systems �17�, which should not depend on
the details of the system since in the low-dissipative limit the
system’s phase-space approaches that of Hamiltonian sys-
tems, which have universal properties. We, therefore, expect
that the same behavior to hold for other systems.

The natural question that arises is the following: what
happens to the topology of the phase space as new attractors
continually appear with decreasing damping?
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FIG. 2. �Color online� Total number of periodic attractors,
which were detected numerically for the single rotor map �black
circles�, and for the Hénon map �red diamonds� for different values
of �. The parameters were f0=4.0, for the single rotor map, and
A=1.075 for the Hénon map. It is also shown that the power laws
fits, the black and the red solid lines for the single rotor map and for
the Hénon map, respectively; compare to the number of period-1
attractors expected from Eq. �2� �black dashed line� for the single
rotor map. The divergence from this curve �dashed black line� to the
other �black solid line� is clear, showing the important contribution
of high-period periodic attractors in the regime of small damping
for the single rotor map.
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III. TOPOLOGY OF THE PHASE SPACE

We start this section by presenting a qualitative picture of
the transformations occurring in phase-space structure when
the damping is decreased. For simplicity, we restrict our-
selves to map �1�. Although one cannot draw definitive con-
clusions from this qualitative analysis, it motivates us to
some further quantitative investigation, which will be tackled
at the end of this section and in the next one. In order to get
some clue about which topological changes occur when the
damping is decreased, we begin by looking at the phase
space for the system with constant forcing and high damp-
ing. In this case the system has only few periodic attractors.
We decrease then �, find the periodic attractors for the new
parameter, and plot their basins of attraction. Since we are
now only interested in the general picture, the number of
initial conditions is fixed at 2�106.

If we follow the distributions of filaments of the largest
basin of attraction in the phase space, we notice that their
structure becomes more heterogeneous for different regions
when the damping is decreased. This is illustrated in Fig. 3,
where each color �color online� represents a set of initial
conditions, which converge to one of the attractors, i.e., dif-
ferent colors represent different basins of attraction. In Fig.
3�a�, for which �=0.32, we notice that the largest basin of
attraction �in black� is spread out over the phase space in an
intricate structure. Moreover, if we compare distinct regions
of the phase space, there is a qualitative difference in the
“density” of filaments of the largest basin of attraction. In
particular, the farther the region is from the main attractor,
the thinner the filaments become. In Fig. 3�b�, for �=0.3, we
detect five attractors and the topology of the phase space,
i.e., the spatial distribution of invariant sets, seems to be-
come more complex. Going even further, for �=0.2415 in
Fig. 3�c�, we have seven attractors in the same region and the
difference of density of those filaments is clearer. Figure 3�d�

is the blow up of the region x� �4,5�, y� �−15,−10� for �
=0.2415. The rescaling of the phase space shows the struc-
ture of the basins, which seems to form a self-similar pattern,
as illustrated in Fig. 4.

As we decrease the damping even further, this process
seems to carry on and the heterogeneity of the phase space
keeps increasing. Furthermore, the difference in density of
filaments of distinct regions of the phase space is seen by
looking, for instance, at the largest basin of attraction for �
=0.02, and f0=4.0. For these parameters we expect from Eq.
�3� to find about 140 periodic attractors. The largest basin of
attraction is responsible for about 36% of the initial condi-
tions �x0 ,y0�� �0,2��� �−� ,�� �10�. This is illustrated in
Fig. 5, which has been done by the iteration of an ensemble
of 106 initial conditions.

The structures we just presented are nothing but manifes-
tations of some of the underlying invariant sets. That is, the
dynamics has multiple periodic attractors, and the closure of
the set of initial conditions that approaches a given attractor

FIG. 3. �Color online� Basins of attraction for f0=4.0 at differ-
ent values of �. Each color represents a set of initial conditions,
which converge to one of the attractors. In �a� �=0.32, in �b� �
=0.3, in �c� �=0.2415, and �d� is the blow up of a region x
� �4,5� ,y� �−15,−10� for �=0.2415. We used 2�106 initial con-
ditions for each one of the figures.

FIG. 4. �Color online� Blow up of the region x
� �4.662,4.679� ,y� �−13.955,−13.94� for �=0.2415 in Fig. 3�d�,
showing the fractal Cantor structure.

FIG. 5. The largest basin of attraction for �=0.02 and f0=4.0.
The black points represent initial conditions, which converge to the
attractor formed from the main island. The initial conditions were
chosen such that �x0 ,y0�� �0,2��� �−� ,��. We used the same pa-
rameters as those used in Ref. �10�.
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is its basin of attraction. The boundary that separates differ-
ent basins of attraction is the basin boundary. This basin
boundary is the stable manifold of an invariant set. If we
define the boundary B in some region of the phase space
embedded in the boundary as S�B, where S denotes some
open set in phase space that contains part of the boundary B,
we expect for a given � the fractal dimension of the basin
boundary, dim�S�B�, to be constant at different regions of
the phase space, R��, as it has been conjectured in Ref.
�18�. Nevertheless, for physically relevant scales, the hetero-
geneity in the distribution of the basins over the phase space,
and hence the spatially heterogeneous distribution of invari-
ant manifolds, suggests that course-grained measurements of
quantities such as the fractal dimension should lead to differ-
ent results depending on the region of the phase space and on
the scale under consideration. The reason is that realistic
measurements never take the limit of infinitely small scales
but must have a finite lower scale. Previous works in the
context of Hamiltonian systems show that when the phase
space has a heterogeneous structure such as in this case, one
needs to go to exceedingly small scales to approach the
mathematical value of the fractal dimension, which is unique
and independent of the portion of the phase space used to
calculate it. For physically realistic scales, an approximation
to the fractal dimension �and similar quantities� is more ap-
propriate to describe the system’s dynamics; this approxima-
tion, called the effective fractal dimension, depends on the
position as well as on the scale under consideration. This
effective fractal dimension will be presented in more detail
in the next section.

A finite-scale approximation of the fractal dimension of
the basin boundary can be estimated using the uncertainty
method �19�. It consists in iterating an ensemble of initial
conditions �x0 ,y0� and checking to which attractor they con-
verge. Then we add a small perturbation � to every initial
condition, say �x0 ,y0+��, and check whether they change
from one basin to another. We count the fraction of initial
conditions that have changed their asymptotic state after be-
ing perturbed in this manner. This fraction f��� of � uncer-
tain points is the fraction of initial conditions that change
basins under an �-size perturbation, and it scales as f���
	��, where � is related to the box counting dimension d of
the basin boundary by �=D−d, where D is the dimension of
the phase space �for map �1� we have D=2�.

In Fig. 6 we show the fraction of “uncertain” initial con-
ditions as function of the size of perturbation � �20�. The
slope of the curves is related to the fractal dimension of the
basin boundary.

The exponents �=	 ln f��� /	 ln � can be computed
over some decades. However, we notice in Fig. 6 that
the slope assumes different values for distinct regions of the
phase space. Such regions, Ri��, are defined as R1

�x ,y�� �0,1.5�� �−1.0,−2.5�, and R3
�x ,y�� �1.0,2.5�
� �198.5,200.0�, and they were chosen with the same Le-
besgue measure. We chose three different regions of the
phase space, located at different distances from the main
attractor. We remark that, although such regions may be out
of ��� defined in Sec. II, it does not follow that they do
not contain boundaries. This is because regions ���, de-
fined for each value of �, are portions of the phase space

where the attractors are to be found; their basins, on the other
hand, are expected to be extended throughout the phase
space. Since the density of periodic attractors in phase space
decreases when we look at regions farther away from the
main attractor, we expect the stable manifold to be denser
around the central part of the phase space. Furthermore,
given that we expect the dissipative regime to approach the
complex structures of the Hamiltonian dynamics at the zero
dissipation limit, it is sensible to expect a distribution of
manifolds that are similar for conservative and for low-
dissipative dynamics. For Hamiltonian dynamics, the density
of manifolds decreases as one looks at regions farther from
the main island �7�.

Looking at Fig. 6, it is clear that for ��10−13, the esti-
mated fractal dimension is larger for the region R3, where we
expect the stable manifold to be less dense. Only when we
go down to ��10−13 does the slope for the region R3 con-
verges to the same value as the one of the region R1: for
small enough �, the slope eventually converges to the true
fractal dimension, which has a unique value �18�. We have
computed f��� for even smaller values of �, and we have
observed the same behavior. However, for values as small as
�=0.02, even going down to �=10−35 is not enough to obtain
a convergence to a unique value of the estimated dimension
in different regions. This shows that an effective dimension
is indeed the relevant physical quantity to be considered also
for weakly dissipative systems.

IV. EFFECTIVE FRACTAL DIMENSION

From the theoretical results regarding the fractal dimen-
sion of the basin boundary �18�, we expect to have the same
fractal dimension for different regions of the phase space.
However, the above discussion and results suggest that, for
realistic scales, the behavior for weakly dissipative systems
can be quite different from the asymptotic one. Therefore, it
is sensible to describe the system in terms of effective invari-
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FIG. 6. Fraction of uncertain initial conditions f��� as a function
of the perturbation size � for two different regions of the phase
space. The regions, Ri��, were defined as R1
�x ,y�� �0,1.5�
� �−1.0,−2.5�, and R3
�x ,y�� �1.0,2.5�� �198.5,200.0�. The uti-
lized parameters were f0=4.0, and �=0.08.
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ants, a concept that has been used mostly in the context of
nonhyperbolic Hamiltonian dynamical systems �7�. As an ex-
ample of effective invariants we use the definition of effec-
tive fractal dimension for a D-dimensional system, which
depends on the region R��, and on the scale under consid-
eration �22�. It is defined as

Def f�R,�� = D − �d ln f����
d ln ��

�
��=�

, �6�

where f���� is the total uncertain phase-space volume esti-
mated as ��DN����, and N���� is the number of hypercubes
of size �� necessary to cover S�B.

We have computed the effective fractal dimension of the
basin boundary for finite scales, for different values of �, and
for distinct regions in the phase space. The regions, Ri��,
were chosen to be R1
�x ,y�� �0,1.5�� �−1.0,−2.5�,
R2
�x ,y�� �1.0,2.5�� �18.5,20.0�, and R3
�x ,y�
� �1.0,2.5�� �198.5,200.0�.

We have extracted the effective fractal dimension from
Fig. 7 for �=0.3 and f0=4.0, where the system has appar-
ently five periodic attractors. We notice that for R3, where
the stable manifold is less dense, starting from �=10−1, the
value of the effective fractal dimension is larger but after few
decades it converges to nearly the same as for R1, i.e., Def f
=1.89, where the stable manifold is denser. The same phe-
nomenon is observed for R2 although the convergence is
faster than for R3. When we decrease �, hence increasing the
number of attractors, even for �=10−12, which is almost in
the limit of normal computation and far beyond realistic
measurement capacity, we do observe different values of ef-
fective fractal dimension for different regions, as it is shown
in Figs. 8 and 9, for �=0.07 and �=0.02, respectively. We
also notice that for a given region the exponent � becomes
smaller as the damping is decreased. This indicates that for
such weakly dissipative systems, the fractal dimension is
very close to the dimension of the phase space. This is, of

course, in accordance with the fact that for Hamiltonian sys-
tems ��=0�, the fractal dimension assumes its maximum
value, i.e., D.

V. CONCLUSION

We have shown that the dynamics of weakly dissipative
dynamical systems can be quite different from either the
strongly dissipative systems or the Hamiltonian ones. When
the damping is decreased, the number of periodic attractors
increases. We have shown that the growth of the total num-
ber of attractors is described by a power law. In general, the
interval in the space of parameters in which an attractor ex-
ists is smaller for high-period periodic attractors. For small
damping, attractors with different periods coexist in phase
space, and the contribution of high-period periodic attractors
to the dynamics becomes important. Although the total num-
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ber of attractors in the system is very high for low damping,
our results strongly suggests that it remains finite for ��0,
supporting Palis’ conjecture. The formation of new attractors
as the damping decreases changes the topology of the phase
space considerably. For low damping, the dynamics is better
characterized by effective dynamical invariants, in a similar
way to the case of nonhyperbolic Hamiltonian systems.
These effective dynamical invariant sets depend on the scale
and they differ from one region to the other in the phase
space. In particular, the effective fractal dimension of the
basin boundary is larger for regions where the stable mani-
fold is less dense. For a given region, the smaller the damp-
ing, the closer the effective fractal dimension is to the dimen-
sion of the phase space. Although we have used a specific
example to illustrate our ideas, our results are generic since
we have deal only with general characteristics of dynamical
systems close to Hamiltonian case �12�.
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APPENDIX

On periodic attractors

Some of the most important characteristics of the dynam-
ics are related to invariant subsets in the phase space, which
attract their neighboring points. These sets are called attract-
ing sets, or attractors, depending on the context. There are
various definitions for attractor, the main difference is related
to which points in the neighborhood must approach the set.
We use the definition given for a diffeomorphism f :RN

→RN, that is, f and its inverse are differentiable and the
partial derivatives are continuous. The main source of our
definition is Ref. �23�.

The dynamics takes place in a phase space ��RN, where
there is the notion of distance dist�x1 ,x2� between points x1
and x2, both belonging to �. For example, dist�x1 ,x2� can be
the Euclidean distance �24�. We say that a bounded and lim-
ited region of the phase space, i.e., UA�� is called a trap-
ping region for f if f�UA�� int�UA�, where int�UA� stands for
the interior of UA. Another important concept for the defini-
tion of attractors is the notion of 
 chain. An 
 chain of
length n from x to y for a map f is a sequence �x
=x0 , . . . ,xn=y, such that for all 1� j�n, we have

dist�f�x j−1� ,x j��
. Now we are ready to state a formal defi-
nition of periodic attractors. If forward iterating our map f
in a trapping region, i.e., if we take the set A=�n�0fn�UA�,
and we eventually end up in a unique closed sequence of
points such as these points that are an 
 chain no matter how
small 
�0 is, we have precisely what is defined as an attrac-
tor. In some other words, a periodic attractor is the unique
sequence of points �x1 ,x2 , . . . ,xp ,x1 remaining by iterating
a trapping region, such that dist�f�x j−1� ,x j��
, for all 
�0.
In this case, we have period p. Notice that the attractivity of
the attractor is ensured by requiring the existence of the trap-
ping region. Furthermore, we remark that finding multiple
periodic attractors require the coexistence of different trap-
ping regions.

Although the formal definition of attractor requires the
existence of such sequence of points, the 
 chain, for all

�0, and infinitely many iterations, both experimentally and
numerically, we are constrained by limited precision. Hence
we are forced to use a mild condition on 
. Therefore, the
number of periodic attractors obtained in realistic investiga-
tion intrinsically depends on the precision that we choose.
We give a picturesque illustration of it in Fig. 10. On deter-
mining the number of periodic attractors in this paper, we
have used 
=10−10. Nevertheless, it does not minimize the
importance of ours findings, showing fundamental character-
istics of the dynamics within realistic scale.

We also use a more general definition of basin of attrac-
tion. The basin of attraction of some trapping region U is the
set of positive Lebesgue measure of initial conditions, whose
orbits eventually enter U, as defined in Ref. �25�. Note that
this slightly different definition avoids problems of coher-
ence for not having an infinitely small 
. Because any peri-
odic attractors is contained in some trapping region, hereafter
we often mention the basin of attraction of some attractor,
and it is understood the basin of a given trapping region
containing the attractor under consideration.
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